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ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification
of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can
be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial di-
versity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined
the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed
yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diver-
sity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles
patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and
evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that
niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude
sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range
expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence,
the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of
glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.

IMPORTANCE Biogeographic patterns provide insight into the evolutionary and ecological processes that govern biodiversity.
However, the evolutionary and ecological processes that govern terrestrial microbial diversity remain poorly characterized. We
evaluated the biogeography of the genus Streptomyces to show that the diversity of terrestrial bacteria is governed by many of the
same processes that govern the diversity of many plant and animal species. While bacteria of the genus Streptomyces are a preem-
inent source of antibiotics, their evolutionary history, biogeography, and biodiversity remain poorly characterized. The observa-
tions we describe provide insight into the drivers of Streptomyces biodiversity and the processes that underlie microbial diversi-
fication in terrestrial habitats.
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Patterns of microbial biogeography remain ill described be-
cause tools for measuring microbial diversity have emerged

only recently and are evolving rapidly. It is still unclear to what
degree patterns of microbial diversity can be explained by the
same ecological and evolutionary forces that govern the diversity
of plants and animals. Evolutionary ecology seeks to explain the
forces that govern evolutionary diversification in an ecological
context. If the same forces govern the diversification of both
macro- and microorganisms, then it will be possible to bring the
full theoretical framework which underpins evolutionary ecology
to bear in evaluating the causes and consequences of microbial
diversity.

Microorganisms, due to their small size, large populations,
ability to survive dormancy, and potential for wind dissemination
(1), may support rates of dispersal that far exceed rates of diversi-
fication (2–4). If dispersal rates greatly exceed diversification rates,
then microbial diversity is controlled by selection acting on global
scales (5). There is now abundant evidence that environmental

gradients explain patterns of microbial beta diversity on local and
regional scales (for reviews, see references 5, 6, and 7). It remains
unclear, however, to what degree these biogeographic patterns are
the result of recruitment from globally distributed species pools or
from dispersal limitation and evolutionary diversification acting
on regional scales.

Microorganisms lack morphological features to enable identi-
fication, and definitions for microbial species remain controver-
sial (8). Patterns of microbial biogeography are often inferred
from the analysis of small-subunit (SSU) rRNA genes, with oper-
ational taxonomic units (OTU) defined using a 3% nucleotide
identity cutoff (9). The SSU rRNA gene, however, has an excep-
tionally low substitution rate, and it is estimated that approxi-
mately 50 million years are required to achieve 1% divergence in
SSU rRNA sequences (10). As a point of comparison, the family
Leguminosae first appeared approximately 60 million years ago
(11), and hence all legumes would represent a single OTU if plant
diversity was defined in the manner of microbial diversity. Bio-
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geographic patterns detected through the analysis of SSU rRNA
genes likely result from physiological traits that map deeply in the
tree of life. Indeed, some of the best-documented patterns of mi-
crobial biogeography have been made at the phylum level. For
example, Betaproteobacteria are common in freshwater environ-
ments but uncommon in saltwater; Actinobacteria and Firmicutes
are ubiquitous in soils but rare in oceans, and Actinobacteria de-
crease in abundance in acidic soils while Acidobacteria increase.
These patterns are likely due to characteristics, such as cell enve-
lope structure, that are shared by all members of a phylum and
which convey selective fitness advantages in certain habitats.
However, units of diversity defined by SSU rRNA gene sequences
are insensitive to diversification resulting from dispersal limita-
tion (5).

The examination of dispersal limitation is facilitated by analyz-
ing discrete lineages at sufficient genetic resolution to resolve re-
cent evolutionary divergence due to genetic drift (5, 12). Power to
detect dispersal limitation is further increased by examining taxa
from a single type of habitat that can be found distributed across
large spatial scales (5). This level of focus is readily achieved
through analysis of microbial strains that can be cultivated in iso-
lation (13). For example, multilocus sequence analysis (MLSA) of
Sulfolobus species indicates dispersal limitation and allopatric di-
versification on local and regional scales (14–16). In addition,
genomic analysis of the soilborne pathogen Burkholderia pseu-
domallei revealed genetic diversification driven by vicariance
along Wallace’s line between Southeast Asia and Australia (17).
Also, analysis of single nucleotide polymorphisms in Bacillus an-
thracis indicated introduction of this soilborne pathogen to North
America as a consequence of animal migrations during the late
Pleistocene (18).

We chose the genus Streptomyces (phylum Actinobacteria) as a
model system for exploring bacterial biogeography in soil. There
are currently 615 described species of Streptomyces belonging to
130 clades (19). Streptomyces organisms are ubiquitous in soils,
where they play an important role in the carbon cycle, particularly
in the degradation of insoluble polymers, such as cellulose and
chitin (20). These bacteria are also a major source for the discovery
of clinically useful antibiotics and secondary metabolites (21).
They produce spores that are resistant to starvation, UV light, and
desiccation (22), and so they have the potential for widespread
dispersal. Furthermore, analysis of the genetic diversity of individ-
ual species revealed that Streptomyces species can be distributed
across large geographic regions (on scales of hundreds to thou-
sands of kilometers [23, 24]).

Despite the prevalence and importance of Streptomyces spe-
cies in soil, studies of their biogeography and evolutionary history
are limited. Analysis of Streptomyces diversity on local spatial
scales suggests that their diversity is influenced by environmental
gradients (25, 26). Furthermore, analysis of Streptomyces diversity
with respect to antibiotic production and resistance indicates that
these phenotypes exhibit regional endemism, suggesting dispersal
limitation and regional adaptation (27). We characterized Strep-
tomyces strains from soils across the United States to determine
whether their diversity scales with geographic distance and to ex-
amine the ecological and evolutionary factors that govern their
biogeography. Our focus on a widespread spore-forming organ-
ism provides a strong test for the hypothesis of panmixia.

RESULTS AND DISCUSSION

A total of 924 Streptomyces strains were isolated and characterized
from 15 sites spanning the United States (see Table S1 in the sup-
plemental material). Sites were selected to represent a narrow
range of ecological characteristics, including meadow, pasture, or
native grasslands dominated by perennial grasses and having
moderately acidic soil (pH 6.0 � 1.0 [average � standard devia-
tion, or SD]). Strains were isolated under uniform conditions (see
Materials and Methods), which were used to select for strains
having similar physiological characteristics. The analysis of
physiologically similar strains from ecologically similar sites
improves our ability to detect biogeographical patterns that
result from drift by minimizing the importance of selection
(reviewed in reference 5).

The isolated strains encompassed 208 unique rpoB sequences,
which were classified into 107 OTUs with clusters defined at a
patristic distance of 0.01 (OTUrpoB) (see Fig. S1 in the supplemen-
tal material). This distance has previously been observed to
roughly correlate with species boundaries for Streptomyces (28).
Good’s coverage was 0.88 for unique rpoB sequences and 0.95 for
OTUrpoB, indicating high coverage of Streptomyces taxonomic di-
versity as captured under our isolation conditions (see Fig. S2 in
the supplemental material). An average of 15.5 � 8.5 OTUrpoB was
observed in each site. None of the OTUrpoB had cosmopolitan
distribution, and each OTUrpoB occurred in an average of 1.7 �
1.3 sites, with the most widespread taxon found in 8 sites. Identical
rpoB sequences were observed in sites separated by more than
5,000 km (sites MS and AK2), indicating the potential for long-
range dispersal.

Despite the potential for long-range dispersal, Streptomyces
beta diversity varied in relation to geographic distance on spatial
scales of 1,000 to 7,000 km (Fig. 1). The null model of random
taxon assortment between sites was rejected, indicating that taxon
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FIG 1 Phylogenetic (A) and taxonomic (B) dissimilarities of Streptomyces
increase as a function of geographic distance between sites. The Mantel coef-
ficient is provided along with the linear regression line.
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composition differed significantly between sites (UniFrac analy-
sis; P � 0.01). Both phylogenetic differentiation and Bray-Curtis
dissimilarity (BCD) increased in relation to geographic distance
(Fig. 1) (Unifrac distance, Mantel R2 � 0.32, P � 0.018; BCD for
OTUrpoB, Mantel R2 � 0.45, P � 0.002; BCD for unique rpoB,
Mantel R2 � 0.51, P � 0.002); these relationships remained sig-
nificant if the Alaska (AK) sites were excluded from the analysis. In
addition, we observed significant phylogenetic clustering in all
sites except for the California, Mississippi, Texas, North Carolina,
and Wisconsin sites (see Table S1 in the supplemental material).
Phylogenetic clustering indicated that taxa within regions are
more closely related to each other than they are to taxa from dis-
tant regions (29). These results agreed with our previous observa-
tions that Streptomyces populations can have large geographic
ranges (23, 24) and with other observations that Streptomyces and
other soil microorganisms exhibit dispersal limitation and re-
gional endemism (27, 30–32).

While dispersal limitation is a parsimonious explanation for
these results, an alternative hypothesis is panmixia and habitat
filtering. This is better known to microbiologists as the Baas
Becking hypothesis: “Everything is everywhere, but, the envi-
ronment selects” (3). Habitat filtering of panmictic species
would cause beta diversity to correspond strongly with envi-
ronmental variables at spatial scales that fall within the
Darwinian-Hutchinsonian zone (33), in which dispersal oc-
curs more rapidly than diversification. If environmental char-
acteristics are correlated with geographic distance within the
Darwinian-Hutchinsonian zone, then habitat filtering could pro-

duce strong relationships between beta diversity and geographic
distance. However, our sampling design reduced habitat variation
and physiological variation of strains, and this should have like-
wise reduced the potential for habitat filtering to explain our re-
sults. In addition, observation of phylogenetic clustering across
scales of thousands of kilometers is indicative of biogeographic
rather than ecological processes, as dispersal limitation and re-
gional diversification cause the species within regions to be more
related to each other than they are to species from other regions
(29, 33). Talbot et al., who likewise sampled soils associated with a
single vegetation type (Pinaceae), also found little impact of envi-
ronmental variation on large spatial scales when they examined
fungal biogeography across North America (32).

To determine whether environmental characteristics could ex-
plain the patterns of beta diversity we observed, environmental
variables were used to calculate the environmental distance be-
tween sites. Bray-Curtis distance varied in relation to the environ-
mental distance between sites (Mantel R2 � 0.275, P � 0.008), but
this result was not significant if the Alaska sites were excluded
(Mantel R2 � 0.157, P � 0.146). Canonical correspondence anal-
ysis found no significant correlation between beta diversity and
environmental characteristics whether the Alaska sites were in-
cluded (P � 0.73) or excluded (P � 0.14). With respect to discrete
environmental variables, Streptomyces beta diversity varied in re-
lation to latitude, temperature, and soil pH, but not in relation to
soil organic matter or annual precipitation (Table 1). Support for
a relationship between beta diversity and temperature declined
when the Alaska sites were excluded, though other results were
largely unaffected by removing the Alaska sites (see Table S2 in the
supplemental material). These results indicated that environmen-
tal variables have a minor though significant impact on Strepto-
myces beta diversity, with the greatest amount of variation due to
latitude and soil pH. Soil pH is well known to impact the beta
diversity of Actinobateria in soil (34, 35), and certain Streptomyces
species are known to have habitat constraints which are circum-
scribed by soil pH (36).

Streptomyces phylogenetic diversity was negatively corre-
lated with latitude (Table 2; Fig. 2). A latitudinal gradient was
observed in relation to Faith’s phylogenetic diversity (PD)
(Fig. 2A) (r � �0.70, P � 0.012), the net relatedness index (NRI)
(Fig. 2B) (r � 0.72, P � 0.008), and mean root distance (MRD)
(r � 0.61, P � 0.035). The correlation between Streptomyces phy-
logenetic diversity and latitude corresponded with the slope of the
latitudinal diversity gradient observed for a wide range of taxa
(average slope, �0.73), as determined in the meta-analysis re-

TABLE 1 Relationships between environmental factors and
Streptomyces phylogenetic (UniFrac distance) and taxonomic (Bray-
Curtis dissimilarity) valuesa

Analysis
type

Sequence
inclusion

Correlation (R2 value) withb:

Latitude Soil pH Temp SOM PPT

UniFrac Weighted 0.52** 0.35 0.50** 0.26 0.28
Unweighted 0.48*** 0.41* 0.44** 0.32 0.34

Bray-Curtis Weighted 0.46*** 0.40* 0.44** 0.21 0.33
Unweighted 0.46*** 0.44** 0.44** 0.25 0.31

a Analyzed by using the adonis program (permutational multivariate analysis of
variance) within the R package.
b Bold values indicate statistically significant correlations (*, P � 0.05; **, P � 0.01; ***,
P � 0.001). The analyses were performed by either including all rpoB sequences
(weighted) or excluding duplicate sequences for each OTU (unweighted).
Abbreviations: Temp, average annual temperature; SOM, soil organic matter content;
PPT, annual average precipitation.

TABLE 2 Correlation coefficients for relationships between Streptomyces diversity and environmental characteristics across sitesa

Characteristic

Correlation (R2 value) based on:

PD NRI MRD Lat. Long. Temp SOM PPT

NRI �0.86**
MRD �0.70* 0.67*
Lat. �0.70* 0.72** 0.61*
Long. 0.62* �0.51 �0.54 �0.75**
Temp 0.61* �0.64* �0.47 �0.97** 0.60*
SOM 0.45 �0.24 �0.14 �0.16 �0.06 0.27
PPT 0.42 �0.24 0.01 �0.40 0.54 0.38 0.25
pH 0.16 �0.39 �0.42 �0.45 0.11 0.43 0.09 �0.41
a Bold values indicate statistically significant correlations (*, P � 0.05; **, P � 0.01). Abbreviations: Lat., latitude; Long., longitude; Temp, average annual temperature; SOM, soil
organic matter content; PPT, annual average precipitation; pH, soil pH.
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ported by Hillebrand (37). As expected, Streptomyces diversity was
also observed to correlate with temperature (which correlates
strongly with latitude), but a significant correlation was not ob-
served between phylogenetic diversity (as defined by PD, NRI, or
MRD) and soil pH, or between soil pH and latitude (Table 2).
Hence, while soil pH does explain some variation in beta diversity,
it does not underlie the latitudinal diversity gradient we observed.

The latitude diversity gradient is a fundamental pattern in ecol-
ogy, has been well-documented since the days of Wallace (38), and
is consistent across a wide taxonomic range of plant and animal
species (37). Far fewer studies have been able to document a lati-
tude diversity gradient in bacteria. The most likely explanation for
this absence of evidence is the low taxonomic resolution at which
microbial diversity is typically measured (5). Latitudinal patterns
of diversity are typically observed at the population to class level in
plants and animals (38). And yet, while the domain Bacteria is far
older and far more diverse than the domain Eukarya, it is common
practice to quantify patterns of microbial diversity for all Bacteria
as if this domain represented a single ecologically coherent unit.
However, the ecological and evolutionary factors that cause pat-
terns of diversity are best understood when we quantify diversity
at the level of taxonomic resolution that is sufficient to describe
processes of diversification (5).

Taxon-specific, culture-dependent approaches to describing
microbial diversity allow us to evaluate the processes that contrib-
ute to microbial diversification. The notable limitations of
cultivation-dependent approaches are the potential for bias
against certain physiological traits and the lack of sensitivity to

taxa present at very low relative abundance. For example, the cul-
tivation method we used would be unable to detect strains present
at less than 1.25 � 105 cells per g of soil. The biogeographic sam-
pling of plants and animals is likewise subject to both veil line
effects that obscure the presence of rare taxa and to sampling
artifacts that may bias samples against certain physiological types
(for example, nocturnal species are rarely collected during the
day). However, a distinct advantage of a taxon-specific approach
is that it allows for the physiological and genotypic characteriza-
tion of discrete microbial taxa. Such data are highly valuable, be-
cause hypotheses that describe patterns of diversification often
make predictions that can be tested with physiological and
genomic data. Hence, taxon-specific, culture-dependent ap-
proaches provide evidence suitable for evaluating hypotheses de-
rived from the broader field of evolutionary ecology.

The evolutionary forces that generate latitudinal diversity gra-
dients remain under debate, and several hypotheses have been
proposed to explain this biogeographical pattern (reviewed in ref-
erences 39 and 40). Ecological hypotheses explain differences in
species richness as a function of ecological factors, such as carrying
capacity, productivity, and niche availability, which vary across
climate gradients (41). Evolutionary tempo hypotheses invoke the
relationship between higher temperatures and increased kinetics
of metabolism to predict that evolutionary rates and cladogenesis
vary across temperature gradients (42). Hypotheses based on his-
torical contingency propose that diversity gradients result from
historical geologic, ecological, or demographic events that influ-
enced dispersal and diversification (40, 43, 44).

The niche conservatism hypothesis explains the latitude diver-
sity gradient as a function of historical climate change (45–47).
Specifically, the hypothesis posits that climate oscillations and
patterns of glaciation have constrained time for speciation at
higher latitudes and that species found at higher latitudes are de-
rived as a result of demographic range expansion from species
occupying lower latitudes. Niche conservatism is facilitated by
high-density blocking, whereby early colonists subsequently im-
pose density-dependent barriers to colonization by late dispersing
individuals (48). Furthermore, derived populations at higher lat-
itudes are expected to evolve adaptations to their new habitats,
thereby imposing further barriers to latitudinal dispersal across
climate regimes (48). Glacial retreat at the end of the Pleistocene
caused demographic range expansions in diverse plant and animal
species, and the legacy of these events is readily observed in extant
patterns of genetic diversity (49–53). In addition, dispersal limi-
tation and strong priority effects suggest that historical contin-
gency has played an important role in determining the diversity of
soil fungal communities (54, 55), and this may explain why the
diversity of soil fungi varies with respect to the biogeographic
provinces described for North America (32).

The Wisconsin Glacier occurred between 30,000 and
10,000 years BP (maximum extent, approximately 15,000 to
16,000 years BP) and covered nearly all of Canada and the north-
ern part of the United States except for a small region in south-
western Wisconsin known as the Driftless Area (56, 57). The leg-
acy of Pleistocene glaciation in North America can often be
observed as discontinuity in genetic diversity, which manifests at
roughly 40°N latitude (58). In several instances, the genetic diver-
sity of terrestrial species of Bacteria has been shaped by glacial
dynamics during the late Pleistocene (18, 59), including evidence
for discontinuity in the genetic diversity of Actinobacteria along a

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-10

-5

0

5

10

15

20° 30° 40° 50° 60° 70°

1

2

3

4

10

5

6

7

8

9

11

12

1

2

3

4

10

5

6

7

8

9

11

12

Latitude (° N)

N
et 

Re
lat

ed
ne

ss
 In

de
x

Ph
yl

og
en

eti
c D

iv
er

sit
y

r = - 0.70, p = 0.012

r =  0.72, p = 0.008

A

B

FIG 2 Latitude correlates with the phylogenetic diversity of Streptomyces as
measured by both Faith’s phylogenetic diversity (A) and the net relatedness
index (B). The Pearson correlation coefficient is provided along with the linear
regression line. Symbols indicate the presence (e) or absence (Œ) of glaciation
during the late Pleistocene. Numbers rank sites by time available for coloniza-
tion, as follows: 1, WI; 2, NC; 3, MS; 4, TX; 5, CA; 6, FL; 7, NY; 8, ME; 9, WA;
10, OR; 11, AK1; 12, AK2. The FL site was below sea level at the beginning of the
late Pleistocene, and sites in southern Wisconsin bound the Driftless Area,
which escaped glaciation and has remained above sea level since the late Pa-
leozoic.

Andam et al.

4 ® mbio.asm.org March/April 2016 Volume 7 Issue 2 e02200-15

mbio.asm.org


chronosequence formed by recession of Wisconsin glaciation
(60).

The latitudinal gradient of diversity we observed for Strepto-
myces is broadly consistent with the niche conservatism hypothe-
sis. The niche conservatism hypothesis predicts that latitude will
correlate negatively with phylogenetic diversity and positively
with phylogenetic clustering and mean root distance (61, 62), and
these predictions are consistent with our observations for the
Streptomyces diversity gradient (Table 2; Fig. 2). As predicted by
the niche conservatism hypothesis, PD is lower (glaciated, 1.9 �
0.8; nonglaciated, 2.7 � 0.5; P � 0.071), and both NRI phyloge-
netic clustering (glaciated, 10.0 � 4.9; nonglaciated, �0.5 � 5.0;
P � 0.008) and MRD (glaciated, 26.1 � 3.0; nonglaciated, 22.1 �
2.7; P � 0.037) are higher in sites subjected to glaciation than in
nonglaciated sites. In addition, we observed a correlation between
diversity and time available for colonization with respect to phy-
logenetic diversity (Spearman’s r � 0.64, P � 0.026), net related-
ness index (Spearman’s r � �0.82, P � 0.001), and mean root
distance (Spearman’s r � 0.70, P � 0.012), and this is also a pre-
diction of niche conservatism (see Table S1 in the supplemental
material).

The niche conservatism hypothesis predicts that sites at higher
latitudes were colonized following glacial retreat as a result of de-
mographic range expansion from species at lower latitudes. Net-
work analysis of OTUrpoB sharing between sites indicated a strong
latitudinal delineation in the OTUrpoB compositions of sites
(Fig. 3). The network showed that 95% (21/22) of the shared
OTUs observed in glaciated sites were also found in a nonglaciated
site, and most of these OTUs (18/22) were common to Wisconsin.
The WI site also stood out in relationships between NRI, PD, and
latitude (Fig. 2), having lower NRI and PD than sites of compara-
ble latitude (NY and ME sites) and being the only northern lati-
tude site to lack significant phylogenetic clustering (see Table S1 in
the supplemental material). We note that the Driftless Area in
Wisconsin has been proposed as a refugium for certain species of
plants (63), and the unusual diversity of Streptomyces in this re-
gion may be due to the fact that much of Wisconsin was never
glaciated and thus strains from this region had greater opportu-
nity than lower-latitude strains to disperse into habitat exposed by
glacial retreat. In addition, niche conservatism posits that time for
speciation limits diversity, and hence it is interesting that the FL
site was below sea level during the last interglacial period, as re-
cently as 118,000 years ago (64). The FL site, despite being at the
lowest latitude, also had the lowest phylogenetic diversity of any
nonglacial site and was the only nonglacial site to demonstrate
significant phylogenetic clustering (Fig. 2; see also Table S1).

Finally, network analyses of haplotype phylogeography pro-
vided evidence for the regional diversification of Streptomyces
clades as a consequence of population expansion and isolation by
distance (see Fig. S3 and Table S3 in the supplemental material).
The largest observed rpoB haplotype network represented 156
strains. Nested clade analysis revealed that the pattern of ancestry
in this network was consistent with divergence due to population
expansion (representing 82% of the strains in the network) and
subsequent isolation of clades by distance (representing 95% of
the strains in the prior subset) (see Fig. S3 and Table S3). Overall,
421 strains belonged to clades whose pattern of ancestry was con-
sistent with dispersal limitation, and these represented 91% of the
strains in networks that supported evolutionary inference (see
Fig. S3 and Table S3). These findings are consistent with the hy-

pothesis that historical demographic processes explain patterns of
Streptomyces biogeography.

Strong correlations between latitude, temperature, and climate
make it difficult to determine the ultimate mechanisms that gen-
erate latitudinal diversity gradients. For example, the kinetic ef-
fects of temperature have been previously shown to impact latitu-
dinal diversity gradients for marine bacteria (65). In addition, the
diversity gradient we observed could be due to an ecological cor-
relation between Streptomyces diversity and unmeasured differ-
ences in biotic or abiotic variables at our sites. However, the ability
of temperature to increase evolutionary tempo would not explain
the low diversity in our FL site or the high diversity in Wisconsin.
Likewise, neither the effects of temperature nor the effects of biotic
or abiotic variables would readily predict discontinuity in phylo-
genetic clustering or mean root depth with respect to historically
glaciated and nonglaciated sites; nor would these hypotheses ex-
plain well the inference of demographic expansion provided by
analysis of haplotype networks. Finally, observations of the ge-
netic diversity within Streptomyces populations indicate that, de-
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spite evidence for dispersal limitation, multiple species are in link-
age equilibrium across large latitudinal gradients (23, 24). The
most parsimonious explanation of these apparently conflicting
results is that these populations have experienced an evolution-
arily recent demographic range expansion from low to high lati-
tudes. While the results we describe are broadly consistent with
niche conservatism, they do not rigorously exclude other hypoth-
eses. Ultimately, it is likely that latitudinal diversity gradients can
result from a combination of ecological, evolutionary, and histor-
ical processes and that the relative importance of these different
mechanisms varies between different taxa.

In summary, these data indicate that Streptomyces diversity
varies in relation to geographic distance and manifests in a latitu-
dinal diversity gradient. Furthermore, the data suggest that these
patterns result from dispersal limitation and the regional diversi-
fication of clades. Habitat filtering is often invoked to explain mi-
crobial biogeography, but while habitat filtering could produce
patterns of beta diversity that vary with latitude, this hypothesis
does not predict latitudinal gradients of PD, NRI, and MRD.
While soil pH was shown to influence beta diversity (Table 1), soil
pH did not correlate with latitude across our sites, and soil pH did
not correlate with patterns of PD, NRI, and MRD (Table 2).
Hence, we conclude that soil pH is unlikely to underlie the latitu-
dinal diversity gradient. The hypothesis that is most parsimonious
given the data we have described is that historical demographic
events underlie the Streptomyces latitudinal diversity gradient,
though these data do not exclude completely either evolutionary
or ecological hypotheses. The hypothesis of niche conservatism
leads to specific predictions about the genetic consequences of
demographic expansion and the phylogenetic conservation of
phenotypic traits associated with different climate regimes (45–
47). Physiological and genomic analyses of Streptomyces strains
from our culture collection should make it possible to further test
specific predictions of niche conservatism.

MATERIALS AND METHODS
Sampling and strain collection. Streptomyces strains (n � 924) were iso-
lated from 15 sites across the United States (see Table S1 in the supple-
mental material). Soils were collected exclusively from sites dominated by
perennial grasses with neutral to acidic pH (lawn, meadow, and pasture).
Soils were sampled at a 0- to 5-cm depth and air dried at room tempera-
ture. Soil organic matter content was measured by loss on ignition, and
soil pH was determined for a 1:2 (wt/vol) dilution of soil in 0.01 M CaCl2
(66). Precipitation and temperature data were obtained from the U.S.
National Centers for Environmental Information (http://www.ncdc.no-
aa.gov/) and represent 30-year climate normal data unless otherwise de-
scribed. Glacial extent and chronology were determined based on the
methods of Peltier (67).

For Streptomyces isolation, 50 mg of soil was diluted 1:100 (wt/vol) in
phosphate-buffered saline and mixed vigorously (1 to 2 min), after which
25 to 50 �l was spread onto glycerol-arginine plates containing 300 mg/
liter cycloheximide and 30 mg/liter Rose bengal (68, 69), with the pH
adjusted to 8.7 as previously described (23). Colonies developed after 5 to
7 days of incubation at room temperature, and strains were isolated by
repeated streaking. DNA was extracted from purified cultures, which were
grown with shaking at 30°C in liquid yeast extract-malt extract medium
(YEME) containing 0.5% glycine (22), using a standard phenol-
chloroform-isoamyl alcohol protocol (70). The resulting DNA was resus-
pended in 150 �l of Tris-EDTA buffer.

Sequence analysis. PCR amplification and sequencing of rpoB was
performed as described elsewhere (71). Briefly, PCR was performed in
25-�l volumes containing 1� AmpliTaq gold buffer (Applied Biosystems,

Foster City, CA), 3 mM MgCl2, 2.5 mM each deoxynucleoside triphos-
phate (Promega, Madison, WI), 0.4 �M rpoB forward primer (5=-GAGC
GCATGACCACCCAGGACGTCGAGGC-3=), 0.4 �M rpoB reverse
primer (5=-CCTCGTAGTTGTGACCCTCCCACGGCATGA-3=), 10%
dimethyl sulfoxide, 1.25 U AmpliTaq Gold (Applied Biosystems, Foster
City, CA), and 50 to 200 ng DNA. The following reaction conditions were
used: 95°C for 10 min for initial denaturation, followed by 35 cycles of
95°C for 20 s, 65°C for 30 s, and 72°C for 45 s, and final extension at 72°C
for 10 min. Sequencing of PCR products was performed at the Cornell Life
Sciences Core Laboratories Center. Sequences were assembled manually,
and trace files were inspected visually and uniformly trimmed to achieve a
final length of 377 bp.

Sequences used in phylogenetic analyses were aligned using MUSCLE
(72). Maximum likelihood trees were constructed with the general time-
reversible model of nucleotide substitution (73), incorporating an esti-
mated proportion of invariant sites and discrete gamma distribution
(GTR�I�G) within the RAxML program (74). Trees were rooted using
Mycobacterium smegmatis as the outgroup.

Analyses of Streptomyces diversity and phylogeography. Opera-
tional taxonomic units based on rpoB sequences were defined at a 0.01
nucleotide dissimilarity cutoff using patristic distances as implemented in
RAMI (75). This dissimilarity cutoff roughly delineates the genetic diver-
gence between characterized Streptomyces species (28). In the case of the
Wisconsin and North Carolina sites, sequences were aggregated across
two or three soil samples, respectively, to ensure that �30 strains were
available to represent each region. The decision to aggregate was justified
by similarities in climate, geography, and soil characteristics across the
aggregated samples. In addition, previous analyses had indicated that
Streptomyces species are broadly distributed at regional scales
(�1,000 km) (23, 24). This provided 12 sites with 77 � 30 (mean � SD)
strains characterized per site. Beta diversity was evaluated through hier-
archical clustering implemented within UniFrac (76). Mantel correla-
tions between matrices of geographic distance and either UniFrac or
Bray-Curtis distances were performed with the R package ecodist (77)
and the Pearson correlation method with 1,000 permutations. Patterns
of OTUrpoB sharing were visualized using Cytoscape 2.8 and the y-files
organic layout (78).

Values for the NRI, nearest taxon index (NTI), and Faiths PD were
calculated using Phylocom v.4.2 (79). For both the NRI and NTI, positive
values indicate phylogenetic clustering (i.e., closely related taxa cooccur
more than expected by chance), negative values indicate overdispersal or
phylogenetic evenness, and values close to zero suggest a phylogenetically
random assembly of species. Significance was determined by permutation
(n � 999) in comparison to a null model where taxa are assigned to each
site by random draw without replacement from the list of all taxa. The
MRD was calculated as the average number of nodes separating the spe-
cies in a site from the root of their phylogenetic tree (80).

Haplotype networks were created using a statistical parsimony proce-
dure (81, 82) as implemented in TCS v1.18 (83). Closed loops represent-
ing network ambiguities were resolved using the nesting rules proposed by
Templeton et al. (82). The final nested clade information was used as
input in the program GeoDis v2.2 (84). GeoDis analyzes the nested hap-
lotype network to make inferences on the processes that could have pro-
duced the association of the haplotype distribution and geography. Both
TCS v1.18 and GeoDis v2.2 were performed with the ANeCA platform
(85).

Nucleotide sequence accession numbers. rpoB gene sequences deter-
mined in this study are available from GenBank under accession numbers
KU238378:KU238472 and KU956103:KU956931.

SUPPLEMENTAL MATERIAL
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